2021-09-30 20:25:26 +02:00

1956 lines
71 KiB
Python

import copy
import itertools
import re
import warnings
from collections.abc import Mapping
import pymongo
import pymongo.errors
from bson import SON, json_util
from bson.code import Code
from pymongo.collection import ReturnDocument
from pymongo.common import validate_read_preference
from pymongo.read_concern import ReadConcern
from mongoengine import signals
from mongoengine.base import get_document
from mongoengine.common import _import_class
from mongoengine.connection import get_db
from mongoengine.context_managers import (
set_read_write_concern,
set_write_concern,
switch_db,
)
from mongoengine.errors import (
BulkWriteError,
InvalidQueryError,
LookUpError,
NotUniqueError,
OperationError,
)
from mongoengine.pymongo_support import count_documents
from mongoengine.queryset import transform
from mongoengine.queryset.field_list import QueryFieldList
from mongoengine.queryset.visitor import Q, QNode
__all__ = ("BaseQuerySet", "DO_NOTHING", "NULLIFY", "CASCADE", "DENY", "PULL")
# Delete rules
DO_NOTHING = 0
NULLIFY = 1
CASCADE = 2
DENY = 3
PULL = 4
class BaseQuerySet:
"""A set of results returned from a query. Wraps a MongoDB cursor,
providing :class:`~mongoengine.Document` objects as the results.
"""
__dereference = False
_auto_dereference = True
def __init__(self, document, collection):
self._document = document
self._collection_obj = collection
self._mongo_query = None
self._query_obj = Q()
self._cls_query = {}
self._where_clause = None
self._loaded_fields = QueryFieldList()
self._ordering = None
self._snapshot = False
self._timeout = True
self._allow_disk_use = False
self._read_preference = None
self._read_concern = None
self._iter = False
self._scalar = []
self._none = False
self._as_pymongo = False
self._search_text = None
# If inheritance is allowed, only return instances and instances of
# subclasses of the class being used
if document._meta.get("allow_inheritance") is True:
if len(self._document._subclasses) == 1:
self._cls_query = {"_cls": self._document._subclasses[0]}
else:
self._cls_query = {"_cls": {"$in": self._document._subclasses}}
self._loaded_fields = QueryFieldList(always_include=["_cls"])
self._cursor_obj = None
self._limit = None
self._skip = None
self._hint = -1 # Using -1 as None is a valid value for hint
self._collation = None
self._batch_size = None
self._max_time_ms = None
self._comment = None
# Hack - As people expect cursor[5:5] to return
# an empty result set. It's hard to do that right, though, because the
# server uses limit(0) to mean 'no limit'. So we set _empty
# in that case and check for it when iterating. We also unset
# it anytime we change _limit. Inspired by how it is done in pymongo.Cursor
self._empty = False
def __call__(self, q_obj=None, **query):
"""Filter the selected documents by calling the
:class:`~mongoengine.queryset.QuerySet` with a query.
:param q_obj: a :class:`~mongoengine.queryset.Q` object to be used in
the query; the :class:`~mongoengine.queryset.QuerySet` is filtered
multiple times with different :class:`~mongoengine.queryset.Q`
objects, only the last one will be used.
:param query: Django-style query keyword arguments.
"""
query = Q(**query)
if q_obj:
# Make sure proper query object is passed.
if not isinstance(q_obj, QNode):
msg = (
"Not a query object: %s. "
"Did you intend to use key=value?" % q_obj
)
raise InvalidQueryError(msg)
query &= q_obj
queryset = self.clone()
queryset._query_obj &= query
queryset._mongo_query = None
queryset._cursor_obj = None
return queryset
def __getstate__(self):
"""
Need for pickling queryset
See https://github.com/MongoEngine/mongoengine/issues/442
"""
obj_dict = self.__dict__.copy()
# don't picke collection, instead pickle collection params
obj_dict.pop("_collection_obj")
# don't pickle cursor
obj_dict["_cursor_obj"] = None
return obj_dict
def __setstate__(self, obj_dict):
"""
Need for pickling queryset
See https://github.com/MongoEngine/mongoengine/issues/442
"""
obj_dict["_collection_obj"] = obj_dict["_document"]._get_collection()
# update attributes
self.__dict__.update(obj_dict)
# forse load cursor
# self._cursor
def __getitem__(self, key):
"""Return a document instance corresponding to a given index if
the key is an integer. If the key is a slice, translate its
bounds into a skip and a limit, and return a cloned queryset
with that skip/limit applied. For example:
>>> User.objects[0]
<User: User object>
>>> User.objects[1:3]
[<User: User object>, <User: User object>]
"""
queryset = self.clone()
queryset._empty = False
# Handle a slice
if isinstance(key, slice):
queryset._cursor_obj = queryset._cursor[key]
queryset._skip, queryset._limit = key.start, key.stop
if key.start and key.stop:
queryset._limit = key.stop - key.start
if queryset._limit == 0:
queryset._empty = True
# Allow further QuerySet modifications to be performed
return queryset
# Handle an index
elif isinstance(key, int):
if queryset._scalar:
return queryset._get_scalar(
queryset._document._from_son(
queryset._cursor[key],
_auto_dereference=self._auto_dereference,
)
)
if queryset._as_pymongo:
return queryset._cursor[key]
return queryset._document._from_son(
queryset._cursor[key],
_auto_dereference=self._auto_dereference,
)
raise TypeError("Provide a slice or an integer index")
def __iter__(self):
raise NotImplementedError
def _has_data(self):
"""Return True if cursor has any data."""
queryset = self.order_by()
return False if queryset.first() is None else True
def __bool__(self):
"""Avoid to open all records in an if stmt in Py3."""
return self._has_data()
# Core functions
def all(self):
"""Returns a copy of the current QuerySet."""
return self.__call__()
def filter(self, *q_objs, **query):
"""An alias of :meth:`~mongoengine.queryset.QuerySet.__call__`"""
return self.__call__(*q_objs, **query)
def search_text(self, text, language=None):
"""
Start a text search, using text indexes.
Require: MongoDB server version 2.6+.
:param language: The language that determines the list of stop words
for the search and the rules for the stemmer and tokenizer.
If not specified, the search uses the default language of the index.
For supported languages, see
`Text Search Languages <http://docs.mongodb.org/manual/reference/text-search-languages/#text-search-languages>`.
"""
queryset = self.clone()
if queryset._search_text:
raise OperationError("It is not possible to use search_text two times.")
query_kwargs = SON({"$search": text})
if language:
query_kwargs["$language"] = language
queryset._query_obj &= Q(__raw__={"$text": query_kwargs})
queryset._mongo_query = None
queryset._cursor_obj = None
queryset._search_text = text
return queryset
def get(self, *q_objs, **query):
"""Retrieve the the matching object raising
:class:`~mongoengine.queryset.MultipleObjectsReturned` or
`DocumentName.MultipleObjectsReturned` exception if multiple results
and :class:`~mongoengine.queryset.DoesNotExist` or
`DocumentName.DoesNotExist` if no results are found.
"""
queryset = self.clone()
queryset = queryset.order_by().limit(2)
queryset = queryset.filter(*q_objs, **query)
try:
result = next(queryset)
except StopIteration:
msg = "%s matching query does not exist." % queryset._document._class_name
raise queryset._document.DoesNotExist(msg)
try:
# Check if there is another match
next(queryset)
except StopIteration:
return result
# If we were able to retrieve the 2nd doc, raise the MultipleObjectsReturned exception.
raise queryset._document.MultipleObjectsReturned(
"2 or more items returned, instead of 1"
)
def create(self, **kwargs):
"""Create new object. Returns the saved object instance."""
return self._document(**kwargs).save(force_insert=True)
def first(self):
"""Retrieve the first object matching the query."""
queryset = self.clone()
try:
result = queryset[0]
except IndexError:
result = None
return result
def insert(
self, doc_or_docs, load_bulk=True, write_concern=None, signal_kwargs=None
):
"""bulk insert documents
:param doc_or_docs: a document or list of documents to be inserted
:param load_bulk (optional): If True returns the list of document
instances
:param write_concern: Extra keyword arguments are passed down to
:meth:`~pymongo.collection.Collection.insert`
which will be used as options for the resultant
``getLastError`` command. For example,
``insert(..., {w: 2, fsync: True})`` will wait until at least
two servers have recorded the write and will force an fsync on
each server being written to.
:param signal_kwargs: (optional) kwargs dictionary to be passed to
the signal calls.
By default returns document instances, set ``load_bulk`` to False to
return just ``ObjectIds``
"""
Document = _import_class("Document")
if write_concern is None:
write_concern = {}
docs = doc_or_docs
return_one = False
if isinstance(docs, Document) or issubclass(docs.__class__, Document):
return_one = True
docs = [docs]
for doc in docs:
if not isinstance(doc, self._document):
msg = "Some documents inserted aren't instances of %s" % str(
self._document
)
raise OperationError(msg)
if doc.pk and not doc._created:
msg = "Some documents have ObjectIds, use doc.update() instead"
raise OperationError(msg)
signal_kwargs = signal_kwargs or {}
signals.pre_bulk_insert.send(self._document, documents=docs, **signal_kwargs)
raw = [doc.to_mongo() for doc in docs]
with set_write_concern(self._collection, write_concern) as collection:
insert_func = collection.insert_many
if return_one:
raw = raw[0]
insert_func = collection.insert_one
try:
inserted_result = insert_func(raw)
ids = (
[inserted_result.inserted_id]
if return_one
else inserted_result.inserted_ids
)
except pymongo.errors.DuplicateKeyError as err:
message = "Could not save document (%s)"
raise NotUniqueError(message % err)
except pymongo.errors.BulkWriteError as err:
# inserting documents that already have an _id field will
# give huge performance debt or raise
message = "Bulk write error: (%s)"
raise BulkWriteError(message % err.details)
except pymongo.errors.OperationFailure as err:
message = "Could not save document (%s)"
if re.match("^E1100[01] duplicate key", str(err)):
# E11000 - duplicate key error index
# E11001 - duplicate key on update
message = "Tried to save duplicate unique keys (%s)"
raise NotUniqueError(message % err)
raise OperationError(message % err)
# Apply inserted_ids to documents
for doc, doc_id in zip(docs, ids):
doc.pk = doc_id
if not load_bulk:
signals.post_bulk_insert.send(
self._document, documents=docs, loaded=False, **signal_kwargs
)
return ids[0] if return_one else ids
documents = self.in_bulk(ids)
results = [documents.get(obj_id) for obj_id in ids]
signals.post_bulk_insert.send(
self._document, documents=results, loaded=True, **signal_kwargs
)
return results[0] if return_one else results
def count(self, with_limit_and_skip=False):
"""Count the selected elements in the query.
:param with_limit_and_skip (optional): take any :meth:`limit` or
:meth:`skip` that has been applied to this cursor into account when
getting the count
"""
# mimic the fact that setting .limit(0) in pymongo sets no limit
# https://docs.mongodb.com/manual/reference/method/cursor.limit/#zero-value
if (
self._limit == 0
and with_limit_and_skip is False
or self._none
or self._empty
):
return 0
kwargs = (
{"limit": self._limit, "skip": self._skip} if with_limit_and_skip else {}
)
if self._limit == 0:
# mimic the fact that historically .limit(0) sets no limit
kwargs.pop("limit", None)
if self._hint not in (-1, None):
kwargs["hint"] = self._hint
if self._collation:
kwargs["collation"] = self._collation
count = count_documents(
collection=self._cursor.collection,
filter=self._query,
**kwargs,
)
self._cursor_obj = None
return count
def delete(self, write_concern=None, _from_doc_delete=False, cascade_refs=None):
"""Delete the documents matched by the query.
:param write_concern: Extra keyword arguments are passed down which
will be used as options for the resultant
``getLastError`` command. For example,
``save(..., write_concern={w: 2, fsync: True}, ...)`` will
wait until at least two servers have recorded the write and
will force an fsync on the primary server.
:param _from_doc_delete: True when called from document delete therefore
signals will have been triggered so don't loop.
:returns number of deleted documents
"""
queryset = self.clone()
doc = queryset._document
if write_concern is None:
write_concern = {}
# Handle deletes where skips or limits have been applied or
# there is an untriggered delete signal
has_delete_signal = signals.signals_available and (
signals.pre_delete.has_receivers_for(doc)
or signals.post_delete.has_receivers_for(doc)
)
call_document_delete = (
queryset._skip or queryset._limit or has_delete_signal
) and not _from_doc_delete
if call_document_delete:
cnt = 0
for doc in queryset:
doc.delete(**write_concern)
cnt += 1
return cnt
delete_rules = doc._meta.get("delete_rules") or {}
delete_rules = list(delete_rules.items())
# Check for DENY rules before actually deleting/nullifying any other
# references
for rule_entry, rule in delete_rules:
document_cls, field_name = rule_entry
if document_cls._meta.get("abstract"):
continue
if rule == DENY:
refs = document_cls.objects(**{field_name + "__in": self})
if refs.limit(1).count() > 0:
raise OperationError(
"Could not delete document (%s.%s refers to it)"
% (document_cls.__name__, field_name)
)
# Check all the other rules
for rule_entry, rule in delete_rules:
document_cls, field_name = rule_entry
if document_cls._meta.get("abstract"):
continue
if rule == CASCADE:
cascade_refs = set() if cascade_refs is None else cascade_refs
# Handle recursive reference
if doc._collection == document_cls._collection:
for ref in queryset:
cascade_refs.add(ref.id)
refs = document_cls.objects(
**{field_name + "__in": self, "pk__nin": cascade_refs}
)
if refs.count() > 0:
refs.delete(write_concern=write_concern, cascade_refs=cascade_refs)
elif rule == NULLIFY:
document_cls.objects(**{field_name + "__in": self}).update(
write_concern=write_concern, **{"unset__%s" % field_name: 1}
)
elif rule == PULL:
document_cls.objects(**{field_name + "__in": self}).update(
write_concern=write_concern, **{"pull_all__%s" % field_name: self}
)
with set_write_concern(queryset._collection, write_concern) as collection:
result = collection.delete_many(queryset._query)
# If we're using an unack'd write concern, we don't really know how
# many items have been deleted at this point, hence we only return
# the count for ack'd ops.
if result.acknowledged:
return result.deleted_count
def update(
self,
upsert=False,
multi=True,
write_concern=None,
read_concern=None,
full_result=False,
**update,
):
"""Perform an atomic update on the fields matched by the query.
:param upsert: insert if document doesn't exist (default ``False``)
:param multi: Update multiple documents.
:param write_concern: Extra keyword arguments are passed down which
will be used as options for the resultant
``getLastError`` command. For example,
``save(..., write_concern={w: 2, fsync: True}, ...)`` will
wait until at least two servers have recorded the write and
will force an fsync on the primary server.
:param read_concern: Override the read concern for the operation
:param full_result: Return the associated ``pymongo.UpdateResult`` rather than just the number
updated items
:param update: Django-style update keyword arguments
:returns the number of updated documents (unless ``full_result`` is True)
"""
if not update and not upsert:
raise OperationError("No update parameters, would remove data")
if write_concern is None:
write_concern = {}
queryset = self.clone()
query = queryset._query
update = transform.update(queryset._document, **update)
# If doing an atomic upsert on an inheritable class
# then ensure we add _cls to the update operation
if upsert and "_cls" in query:
if "$set" in update:
update["$set"]["_cls"] = queryset._document._class_name
else:
update["$set"] = {"_cls": queryset._document._class_name}
try:
with set_read_write_concern(
queryset._collection, write_concern, read_concern
) as collection:
update_func = collection.update_one
if multi:
update_func = collection.update_many
result = update_func(query, update, upsert=upsert)
if full_result:
return result
elif result.raw_result:
return result.raw_result["n"]
except pymongo.errors.DuplicateKeyError as err:
raise NotUniqueError("Update failed (%s)" % err)
except pymongo.errors.OperationFailure as err:
if str(err) == "multi not coded yet":
message = "update() method requires MongoDB 1.1.3+"
raise OperationError(message)
raise OperationError("Update failed (%s)" % err)
def upsert_one(self, write_concern=None, read_concern=None, **update):
"""Overwrite or add the first document matched by the query.
:param write_concern: Extra keyword arguments are passed down which
will be used as options for the resultant
``getLastError`` command. For example,
``save(..., write_concern={w: 2, fsync: True}, ...)`` will
wait until at least two servers have recorded the write and
will force an fsync on the primary server.
:param read_concern: Override the read concern for the operation
:param update: Django-style update keyword arguments
:returns the new or overwritten document
"""
atomic_update = self.update(
multi=False,
upsert=True,
write_concern=write_concern,
read_concern=read_concern,
full_result=True,
**update,
)
if atomic_update.raw_result["updatedExisting"]:
document = self.get()
else:
document = self._document.objects.with_id(atomic_update.upserted_id)
return document
def update_one(self, upsert=False, write_concern=None, full_result=False, **update):
"""Perform an atomic update on the fields of the first document
matched by the query.
:param upsert: insert if document doesn't exist (default ``False``)
:param write_concern: Extra keyword arguments are passed down which
will be used as options for the resultant
``getLastError`` command. For example,
``save(..., write_concern={w: 2, fsync: True}, ...)`` will
wait until at least two servers have recorded the write and
will force an fsync on the primary server.
:param full_result: Return the associated ``pymongo.UpdateResult`` rather than just the number
updated items
:param update: Django-style update keyword arguments
full_result
:returns the number of updated documents (unless ``full_result`` is True)
"""
return self.update(
upsert=upsert,
multi=False,
write_concern=write_concern,
full_result=full_result,
**update,
)
def modify(
self, upsert=False, full_response=False, remove=False, new=False, **update
):
"""Update and return the updated document.
Returns either the document before or after modification based on `new`
parameter. If no documents match the query and `upsert` is false,
returns ``None``. If upserting and `new` is false, returns ``None``.
If the full_response parameter is ``True``, the return value will be
the entire response object from the server, including the 'ok' and
'lastErrorObject' fields, rather than just the modified document.
This is useful mainly because the 'lastErrorObject' document holds
information about the command's execution.
:param upsert: insert if document doesn't exist (default ``False``)
:param full_response: return the entire response object from the
server (default ``False``, not available for PyMongo 3+)
:param remove: remove rather than updating (default ``False``)
:param new: return updated rather than original document
(default ``False``)
:param update: Django-style update keyword arguments
"""
if remove and new:
raise OperationError("Conflicting parameters: remove and new")
if not update and not upsert and not remove:
raise OperationError("No update parameters, must either update or remove")
queryset = self.clone()
query = queryset._query
if not remove:
update = transform.update(queryset._document, **update)
sort = queryset._ordering
try:
if full_response:
msg = "With PyMongo 3+, it is not possible anymore to get the full response."
warnings.warn(msg, DeprecationWarning)
if remove:
result = queryset._collection.find_one_and_delete(
query, sort=sort, **self._cursor_args
)
else:
if new:
return_doc = ReturnDocument.AFTER
else:
return_doc = ReturnDocument.BEFORE
result = queryset._collection.find_one_and_update(
query,
update,
upsert=upsert,
sort=sort,
return_document=return_doc,
**self._cursor_args,
)
except pymongo.errors.DuplicateKeyError as err:
raise NotUniqueError("Update failed (%s)" % err)
except pymongo.errors.OperationFailure as err:
raise OperationError("Update failed (%s)" % err)
if full_response:
if result["value"] is not None:
result["value"] = self._document._from_son(result["value"])
else:
if result is not None:
result = self._document._from_son(result)
return result
def with_id(self, object_id):
"""Retrieve the object matching the id provided. Uses `object_id` only
and raises InvalidQueryError if a filter has been applied. Returns
`None` if no document exists with that id.
:param object_id: the value for the id of the document to look up
"""
queryset = self.clone()
if not queryset._query_obj.empty:
msg = "Cannot use a filter whilst using `with_id`"
raise InvalidQueryError(msg)
return queryset.filter(pk=object_id).first()
def in_bulk(self, object_ids):
"""Retrieve a set of documents by their ids.
:param object_ids: a list or tuple of ObjectId's
:rtype: dict of ObjectId's as keys and collection-specific
Document subclasses as values.
"""
doc_map = {}
docs = self._collection.find({"_id": {"$in": object_ids}}, **self._cursor_args)
if self._scalar:
for doc in docs:
doc_map[doc["_id"]] = self._get_scalar(self._document._from_son(doc))
elif self._as_pymongo:
for doc in docs:
doc_map[doc["_id"]] = doc
else:
for doc in docs:
doc_map[doc["_id"]] = self._document._from_son(
doc,
_auto_dereference=self._auto_dereference,
)
return doc_map
def none(self):
"""Returns a queryset that never returns any objects and no query will be executed when accessing the results
inspired by django none() https://docs.djangoproject.com/en/dev/ref/models/querysets/#none
"""
queryset = self.clone()
queryset._none = True
return queryset
def no_sub_classes(self):
"""Filter for only the instances of this specific document.
Do NOT return any inherited documents.
"""
if self._document._meta.get("allow_inheritance") is True:
self._cls_query = {"_cls": self._document._class_name}
return self
def using(self, alias):
"""This method is for controlling which database the QuerySet will be
evaluated against if you are using more than one database.
:param alias: The database alias
"""
with switch_db(self._document, alias) as cls:
collection = cls._get_collection()
return self._clone_into(self.__class__(self._document, collection))
def clone(self):
"""Create a copy of the current queryset."""
return self._clone_into(self.__class__(self._document, self._collection_obj))
def _clone_into(self, new_qs):
"""Copy all of the relevant properties of this queryset to
a new queryset (which has to be an instance of
:class:`~mongoengine.queryset.base.BaseQuerySet`).
"""
if not isinstance(new_qs, BaseQuerySet):
raise OperationError(
"%s is not a subclass of BaseQuerySet" % new_qs.__name__
)
copy_props = (
"_mongo_query",
"_cls_query",
"_none",
"_query_obj",
"_where_clause",
"_loaded_fields",
"_ordering",
"_snapshot",
"_timeout",
"_allow_disk_use",
"_read_preference",
"_read_concern",
"_iter",
"_scalar",
"_as_pymongo",
"_limit",
"_skip",
"_empty",
"_hint",
"_collation",
"_auto_dereference",
"_search_text",
"_max_time_ms",
"_comment",
"_batch_size",
)
for prop in copy_props:
val = getattr(self, prop)
setattr(new_qs, prop, copy.copy(val))
if self._cursor_obj:
new_qs._cursor_obj = self._cursor_obj.clone()
return new_qs
def select_related(self, max_depth=1):
"""Handles dereferencing of :class:`~bson.dbref.DBRef` objects or
:class:`~bson.object_id.ObjectId` a maximum depth in order to cut down
the number queries to mongodb.
"""
# Make select related work the same for querysets
max_depth += 1
queryset = self.clone()
return queryset._dereference(queryset, max_depth=max_depth)
def limit(self, n):
"""Limit the number of returned documents to `n`. This may also be
achieved using array-slicing syntax (e.g. ``User.objects[:5]``).
:param n: the maximum number of objects to return if n is greater than 0.
When 0 is passed, returns all the documents in the cursor
"""
queryset = self.clone()
queryset._limit = n
queryset._empty = False # cancels the effect of empty
# If a cursor object has already been created, apply the limit to it.
if queryset._cursor_obj:
queryset._cursor_obj.limit(queryset._limit)
return queryset
def skip(self, n):
"""Skip `n` documents before returning the results. This may also be
achieved using array-slicing syntax (e.g. ``User.objects[5:]``).
:param n: the number of objects to skip before returning results
"""
queryset = self.clone()
queryset._skip = n
# If a cursor object has already been created, apply the skip to it.
if queryset._cursor_obj:
queryset._cursor_obj.skip(queryset._skip)
return queryset
def hint(self, index=None):
"""Added 'hint' support, telling Mongo the proper index to use for the
query.
Judicious use of hints can greatly improve query performance. When
doing a query on multiple fields (at least one of which is indexed)
pass the indexed field as a hint to the query.
Hinting will not do anything if the corresponding index does not exist.
The last hint applied to this cursor takes precedence over all others.
"""
queryset = self.clone()
queryset._hint = index
# If a cursor object has already been created, apply the hint to it.
if queryset._cursor_obj:
queryset._cursor_obj.hint(queryset._hint)
return queryset
def collation(self, collation=None):
"""
Collation allows users to specify language-specific rules for string
comparison, such as rules for lettercase and accent marks.
:param collation: `~pymongo.collation.Collation` or dict with
following fields:
{
locale: str,
caseLevel: bool,
caseFirst: str,
strength: int,
numericOrdering: bool,
alternate: str,
maxVariable: str,
backwards: str
}
Collation should be added to indexes like in test example
"""
queryset = self.clone()
queryset._collation = collation
if queryset._cursor_obj:
queryset._cursor_obj.collation(collation)
return queryset
def batch_size(self, size):
"""Limit the number of documents returned in a single batch (each
batch requires a round trip to the server).
See http://api.mongodb.com/python/current/api/pymongo/cursor.html#pymongo.cursor.Cursor.batch_size
for details.
:param size: desired size of each batch.
"""
queryset = self.clone()
queryset._batch_size = size
# If a cursor object has already been created, apply the batch size to it.
if queryset._cursor_obj:
queryset._cursor_obj.batch_size(queryset._batch_size)
return queryset
def distinct(self, field):
"""Return a list of distinct values for a given field.
:param field: the field to select distinct values from
.. note:: This is a command and won't take ordering or limit into
account.
"""
queryset = self.clone()
try:
field = self._fields_to_dbfields([field]).pop()
except LookUpError:
pass
distinct = self._dereference(
queryset._cursor.distinct(field), 1, name=field, instance=self._document
)
doc_field = self._document._fields.get(field.split(".", 1)[0])
instance = None
# We may need to cast to the correct type eg. ListField(EmbeddedDocumentField)
EmbeddedDocumentField = _import_class("EmbeddedDocumentField")
ListField = _import_class("ListField")
GenericEmbeddedDocumentField = _import_class("GenericEmbeddedDocumentField")
if isinstance(doc_field, ListField):
doc_field = getattr(doc_field, "field", doc_field)
if isinstance(doc_field, (EmbeddedDocumentField, GenericEmbeddedDocumentField)):
instance = getattr(doc_field, "document_type", None)
# handle distinct on subdocuments
if "." in field:
for field_part in field.split(".")[1:]:
# if looping on embedded document, get the document type instance
if instance and isinstance(
doc_field, (EmbeddedDocumentField, GenericEmbeddedDocumentField)
):
doc_field = instance
# now get the subdocument
doc_field = getattr(doc_field, field_part, doc_field)
# We may need to cast to the correct type eg. ListField(EmbeddedDocumentField)
if isinstance(doc_field, ListField):
doc_field = getattr(doc_field, "field", doc_field)
if isinstance(
doc_field, (EmbeddedDocumentField, GenericEmbeddedDocumentField)
):
instance = getattr(doc_field, "document_type", None)
if instance and isinstance(
doc_field, (EmbeddedDocumentField, GenericEmbeddedDocumentField)
):
distinct = [instance(**doc) for doc in distinct]
return distinct
def only(self, *fields):
"""Load only a subset of this document's fields. ::
post = BlogPost.objects(...).only('title', 'author.name')
.. note :: `only()` is chainable and will perform a union ::
So with the following it will fetch both: `title` and `author.name`::
post = BlogPost.objects.only('title').only('author.name')
:func:`~mongoengine.queryset.QuerySet.all_fields` will reset any
field filters.
:param fields: fields to include
"""
fields = {f: QueryFieldList.ONLY for f in fields}
return self.fields(True, **fields)
def exclude(self, *fields):
"""Opposite to .only(), exclude some document's fields. ::
post = BlogPost.objects(...).exclude('comments')
.. note :: `exclude()` is chainable and will perform a union ::
So with the following it will exclude both: `title` and `author.name`::
post = BlogPost.objects.exclude('title').exclude('author.name')
:func:`~mongoengine.queryset.QuerySet.all_fields` will reset any
field filters.
:param fields: fields to exclude
"""
fields = {f: QueryFieldList.EXCLUDE for f in fields}
return self.fields(**fields)
def fields(self, _only_called=False, **kwargs):
"""Manipulate how you load this document's fields. Used by `.only()`
and `.exclude()` to manipulate which fields to retrieve. If called
directly, use a set of kwargs similar to the MongoDB projection
document. For example:
Include only a subset of fields:
posts = BlogPost.objects(...).fields(author=1, title=1)
Exclude a specific field:
posts = BlogPost.objects(...).fields(comments=0)
To retrieve a subrange or sublist of array elements,
support exist for both the `slice` and `elemMatch` projection operator:
posts = BlogPost.objects(...).fields(slice__comments=5)
posts = BlogPost.objects(...).fields(elemMatch__comments="test")
:param kwargs: A set of keyword arguments identifying what to
include, exclude, or slice.
"""
# Check for an operator and transform to mongo-style if there is
operators = ["slice", "elemMatch"]
cleaned_fields = []
for key, value in kwargs.items():
parts = key.split("__")
if parts[0] in operators:
op = parts.pop(0)
value = {"$" + op: value}
key = ".".join(parts)
cleaned_fields.append((key, value))
# Sort fields by their values, explicitly excluded fields first, then
# explicitly included, and then more complicated operators such as
# $slice.
def _sort_key(field_tuple):
_, value = field_tuple
if isinstance(value, int):
return value # 0 for exclusion, 1 for inclusion
return 2 # so that complex values appear last
fields = sorted(cleaned_fields, key=_sort_key)
# Clone the queryset, group all fields by their value, convert
# each of them to db_fields, and set the queryset's _loaded_fields
queryset = self.clone()
for value, group in itertools.groupby(fields, lambda x: x[1]):
fields = [field for field, value in group]
fields = queryset._fields_to_dbfields(fields)
queryset._loaded_fields += QueryFieldList(
fields, value=value, _only_called=_only_called
)
return queryset
def all_fields(self):
"""Include all fields. Reset all previously calls of .only() or
.exclude(). ::
post = BlogPost.objects.exclude('comments').all_fields()
"""
queryset = self.clone()
queryset._loaded_fields = QueryFieldList(
always_include=queryset._loaded_fields.always_include
)
return queryset
def order_by(self, *keys):
"""Order the :class:`~mongoengine.queryset.QuerySet` by the given keys.
The order may be specified by prepending each of the keys by a "+" or
a "-". Ascending order is assumed if there's no prefix.
If no keys are passed, existing ordering is cleared instead.
:param keys: fields to order the query results by; keys may be
prefixed with "+" or a "-" to determine the ordering direction.
"""
queryset = self.clone()
old_ordering = queryset._ordering
new_ordering = queryset._get_order_by(keys)
if queryset._cursor_obj:
# If a cursor object has already been created, apply the sort to it
if new_ordering:
queryset._cursor_obj.sort(new_ordering)
# If we're trying to clear a previous explicit ordering, we need
# to clear the cursor entirely (because PyMongo doesn't allow
# clearing an existing sort on a cursor).
elif old_ordering:
queryset._cursor_obj = None
queryset._ordering = new_ordering
return queryset
def clear_cls_query(self):
"""Clear the default "_cls" query.
By default, all queries generated for documents that allow inheritance
include an extra "_cls" clause. In most cases this is desirable, but
sometimes you might achieve better performance if you clear that
default query.
Scan the code for `_cls_query` to get more details.
"""
queryset = self.clone()
queryset._cls_query = {}
return queryset
def comment(self, text):
"""Add a comment to the query.
See https://docs.mongodb.com/manual/reference/method/cursor.comment/#cursor.comment
for details.
"""
return self._chainable_method("comment", text)
def explain(self):
"""Return an explain plan record for the
:class:`~mongoengine.queryset.QuerySet` cursor.
"""
return self._cursor.explain()
# DEPRECATED. Has no more impact on PyMongo 3+
def snapshot(self, enabled):
"""Enable or disable snapshot mode when querying.
:param enabled: whether or not snapshot mode is enabled
"""
msg = "snapshot is deprecated as it has no impact when using PyMongo 3+."
warnings.warn(msg, DeprecationWarning)
queryset = self.clone()
queryset._snapshot = enabled
return queryset
def allow_disk_use(self, enabled):
"""Enable or disable the use of temporary files on disk while processing a blocking sort operation.
(To store data exceeding the 100 megabyte system memory limit)
:param enabled: whether or not temporary files on disk are used
"""
queryset = self.clone()
queryset._allow_disk_use = enabled
return queryset
def timeout(self, enabled):
"""Enable or disable the default mongod timeout when querying. (no_cursor_timeout option)
:param enabled: whether or not the timeout is used
"""
queryset = self.clone()
queryset._timeout = enabled
return queryset
def read_preference(self, read_preference):
"""Change the read_preference when querying.
:param read_preference: override ReplicaSetConnection-level
preference.
"""
validate_read_preference("read_preference", read_preference)
queryset = self.clone()
queryset._read_preference = read_preference
queryset._cursor_obj = None # we need to re-create the cursor object whenever we apply read_preference
return queryset
def read_concern(self, read_concern):
"""Change the read_concern when querying.
:param read_concern: override ReplicaSetConnection-level
preference.
"""
if read_concern is not None and not isinstance(read_concern, Mapping):
raise TypeError(f"{read_concern!r} is not a valid read concern.")
queryset = self.clone()
queryset._read_concern = (
ReadConcern(**read_concern) if read_concern is not None else None
)
queryset._cursor_obj = None # we need to re-create the cursor object whenever we apply read_concern
return queryset
def scalar(self, *fields):
"""Instead of returning Document instances, return either a specific
value or a tuple of values in order.
Can be used along with
:func:`~mongoengine.queryset.QuerySet.no_dereference` to turn off
dereferencing.
.. note:: This effects all results and can be unset by calling
``scalar`` without arguments. Calls ``only`` automatically.
:param fields: One or more fields to return instead of a Document.
"""
queryset = self.clone()
queryset._scalar = list(fields)
if fields:
queryset = queryset.only(*fields)
else:
queryset = queryset.all_fields()
return queryset
def values_list(self, *fields):
"""An alias for scalar"""
return self.scalar(*fields)
def as_pymongo(self):
"""Instead of returning Document instances, return raw values from
pymongo.
This method is particularly useful if you don't need dereferencing
and care primarily about the speed of data retrieval.
"""
queryset = self.clone()
queryset._as_pymongo = True
return queryset
def max_time_ms(self, ms):
"""Wait `ms` milliseconds before killing the query on the server
:param ms: the number of milliseconds before killing the query on the server
"""
return self._chainable_method("max_time_ms", ms)
# JSON Helpers
def to_json(self, *args, **kwargs):
"""Converts a queryset to JSON"""
return json_util.dumps(self.as_pymongo(), *args, **kwargs)
def from_json(self, json_data):
"""Converts json data to unsaved objects"""
son_data = json_util.loads(json_data)
return [self._document._from_son(data) for data in son_data]
def aggregate(self, pipeline, *suppl_pipeline, **kwargs):
"""Perform a aggregate function based in your queryset params
:param pipeline: list of aggregation commands,\
see: http://docs.mongodb.org/manual/core/aggregation-pipeline/
:param suppl_pipeline: unpacked list of pipeline (added to support deprecation of the old interface)
parameter will be removed shortly
:param kwargs: (optional) kwargs dictionary to be passed to pymongo's aggregate call
See https://api.mongodb.com/python/current/api/pymongo/collection.html#pymongo.collection.Collection.aggregate
"""
using_deprecated_interface = isinstance(pipeline, dict) or bool(suppl_pipeline)
user_pipeline = [pipeline] if isinstance(pipeline, dict) else list(pipeline)
if using_deprecated_interface:
msg = "Calling .aggregate() with un unpacked list (*pipeline) is deprecated, it will soon change and will expect a list (similar to pymongo.Collection.aggregate interface), see documentation"
warnings.warn(msg, DeprecationWarning)
user_pipeline += suppl_pipeline
initial_pipeline = []
if self._query:
initial_pipeline.append({"$match": self._query})
if self._ordering:
initial_pipeline.append({"$sort": dict(self._ordering)})
if self._limit is not None:
# As per MongoDB Documentation (https://docs.mongodb.com/manual/reference/operator/aggregation/limit/),
# keeping limit stage right after sort stage is more efficient. But this leads to wrong set of documents
# for a skip stage that might succeed these. So we need to maintain more documents in memory in such a
# case (https://stackoverflow.com/a/24161461).
initial_pipeline.append({"$limit": self._limit + (self._skip or 0)})
if self._skip is not None:
initial_pipeline.append({"$skip": self._skip})
final_pipeline = initial_pipeline + user_pipeline
collection = self._collection
if self._read_preference is not None or self._read_concern is not None:
collection = self._collection.with_options(
read_preference=self._read_preference, read_concern=self._read_concern
)
return collection.aggregate(final_pipeline, cursor={}, **kwargs)
# JS functionality
def map_reduce(
self, map_f, reduce_f, output, finalize_f=None, limit=None, scope=None
):
"""Perform a map/reduce query using the current query spec
and ordering. While ``map_reduce`` respects ``QuerySet`` chaining,
it must be the last call made, as it does not return a maleable
``QuerySet``.
See the :meth:`~mongoengine.tests.QuerySetTest.test_map_reduce`
and :meth:`~mongoengine.tests.QuerySetTest.test_map_advanced`
tests in ``tests.queryset.QuerySetTest`` for usage examples.
:param map_f: map function, as :class:`~bson.code.Code` or string
:param reduce_f: reduce function, as
:class:`~bson.code.Code` or string
:param output: output collection name, if set to 'inline' will try to
use :class:`~pymongo.collection.Collection.inline_map_reduce`
This can also be a dictionary containing output options
see: http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce
:param finalize_f: finalize function, an optional function that
performs any post-reduction processing.
:param scope: values to insert into map/reduce global scope. Optional.
:param limit: number of objects from current query to provide
to map/reduce method
Returns an iterator yielding
:class:`~mongoengine.document.MapReduceDocument`.
.. note::
Map/Reduce changed in server version **>= 1.7.4**. The PyMongo
:meth:`~pymongo.collection.Collection.map_reduce` helper requires
PyMongo version **>= 1.11**.
"""
queryset = self.clone()
MapReduceDocument = _import_class("MapReduceDocument")
map_f_scope = {}
if isinstance(map_f, Code):
map_f_scope = map_f.scope
map_f = str(map_f)
map_f = Code(queryset._sub_js_fields(map_f), map_f_scope or None)
reduce_f_scope = {}
if isinstance(reduce_f, Code):
reduce_f_scope = reduce_f.scope
reduce_f = str(reduce_f)
reduce_f_code = queryset._sub_js_fields(reduce_f)
reduce_f = Code(reduce_f_code, reduce_f_scope or None)
mr_args = {"query": queryset._query}
if finalize_f:
finalize_f_scope = {}
if isinstance(finalize_f, Code):
finalize_f_scope = finalize_f.scope
finalize_f = str(finalize_f)
finalize_f_code = queryset._sub_js_fields(finalize_f)
finalize_f = Code(finalize_f_code, finalize_f_scope or None)
mr_args["finalize"] = finalize_f
if scope:
mr_args["scope"] = scope
if limit:
mr_args["limit"] = limit
if output == "inline" and not queryset._ordering:
map_reduce_function = "inline_map_reduce"
else:
map_reduce_function = "map_reduce"
if isinstance(output, str):
mr_args["out"] = output
elif isinstance(output, dict):
ordered_output = []
for part in ("replace", "merge", "reduce"):
value = output.get(part)
if value:
ordered_output.append((part, value))
break
else:
raise OperationError("actionData not specified for output")
db_alias = output.get("db_alias")
remaing_args = ["db", "sharded", "nonAtomic"]
if db_alias:
ordered_output.append(("db", get_db(db_alias).name))
del remaing_args[0]
for part in remaing_args:
value = output.get(part)
if value:
ordered_output.append((part, value))
mr_args["out"] = SON(ordered_output)
results = getattr(queryset._collection, map_reduce_function)(
map_f, reduce_f, **mr_args
)
if map_reduce_function == "map_reduce":
results = results.find()
if queryset._ordering:
results = results.sort(queryset._ordering)
for doc in results:
yield MapReduceDocument(
queryset._document, queryset._collection, doc["_id"], doc["value"]
)
def exec_js(self, code, *fields, **options):
"""Execute a Javascript function on the server. A list of fields may be
provided, which will be translated to their correct names and supplied
as the arguments to the function. A few extra variables are added to
the function's scope: ``collection``, which is the name of the
collection in use; ``query``, which is an object representing the
current query; and ``options``, which is an object containing any
options specified as keyword arguments.
As fields in MongoEngine may use different names in the database (set
using the :attr:`db_field` keyword argument to a :class:`Field`
constructor), a mechanism exists for replacing MongoEngine field names
with the database field names in Javascript code. When accessing a
field, use square-bracket notation, and prefix the MongoEngine field
name with a tilde (~).
:param code: a string of Javascript code to execute
:param fields: fields that you will be using in your function, which
will be passed in to your function as arguments
:param options: options that you want available to the function
(accessed in Javascript through the ``options`` object)
"""
queryset = self.clone()
code = queryset._sub_js_fields(code)
fields = [queryset._document._translate_field_name(f) for f in fields]
collection = queryset._document._get_collection_name()
scope = {"collection": collection, "options": options or {}}
query = queryset._query
if queryset._where_clause:
query["$where"] = queryset._where_clause
scope["query"] = query
code = Code(code, scope=scope)
db = queryset._document._get_db()
return db.eval(code, *fields)
def where(self, where_clause):
"""Filter ``QuerySet`` results with a ``$where`` clause (a Javascript
expression). Performs automatic field name substitution like
:meth:`mongoengine.queryset.Queryset.exec_js`.
.. note:: When using this mode of query, the database will call your
function, or evaluate your predicate clause, for each object
in the collection.
"""
queryset = self.clone()
where_clause = queryset._sub_js_fields(where_clause)
queryset._where_clause = where_clause
return queryset
def sum(self, field):
"""Sum over the values of the specified field.
:param field: the field to sum over; use dot notation to refer to
embedded document fields
"""
db_field = self._fields_to_dbfields([field]).pop()
pipeline = [
{"$match": self._query},
{"$group": {"_id": "sum", "total": {"$sum": "$" + db_field}}},
]
# if we're performing a sum over a list field, we sum up all the
# elements in the list, hence we need to $unwind the arrays first
ListField = _import_class("ListField")
field_parts = field.split(".")
field_instances = self._document._lookup_field(field_parts)
if isinstance(field_instances[-1], ListField):
pipeline.insert(1, {"$unwind": "$" + field})
result = tuple(self._document._get_collection().aggregate(pipeline))
if result:
return result[0]["total"]
return 0
def average(self, field):
"""Average over the values of the specified field.
:param field: the field to average over; use dot notation to refer to
embedded document fields
"""
db_field = self._fields_to_dbfields([field]).pop()
pipeline = [
{"$match": self._query},
{"$group": {"_id": "avg", "total": {"$avg": "$" + db_field}}},
]
# if we're performing an average over a list field, we average out
# all the elements in the list, hence we need to $unwind the arrays
# first
ListField = _import_class("ListField")
field_parts = field.split(".")
field_instances = self._document._lookup_field(field_parts)
if isinstance(field_instances[-1], ListField):
pipeline.insert(1, {"$unwind": "$" + field})
result = tuple(self._document._get_collection().aggregate(pipeline))
if result:
return result[0]["total"]
return 0
def item_frequencies(self, field, normalize=False, map_reduce=True):
"""Returns a dictionary of all items present in a field across
the whole queried set of documents, and their corresponding frequency.
This is useful for generating tag clouds, or searching documents.
.. note::
Can only do direct simple mappings and cannot map across
:class:`~mongoengine.fields.ReferenceField` or
:class:`~mongoengine.fields.GenericReferenceField` for more complex
counting a manual map reduce call is required.
If the field is a :class:`~mongoengine.fields.ListField`, the items within
each list will be counted individually.
:param field: the field to use
:param normalize: normalize the results so they add to 1.0
:param map_reduce: Use map_reduce over exec_js
"""
if map_reduce:
return self._item_frequencies_map_reduce(field, normalize=normalize)
return self._item_frequencies_exec_js(field, normalize=normalize)
# Iterator helpers
def __next__(self):
"""Wrap the result in a :class:`~mongoengine.Document` object."""
if self._none or self._empty:
raise StopIteration
raw_doc = next(self._cursor)
if self._as_pymongo:
return raw_doc
doc = self._document._from_son(
raw_doc,
_auto_dereference=self._auto_dereference,
)
if self._scalar:
return self._get_scalar(doc)
return doc
def rewind(self):
"""Rewind the cursor to its unevaluated state."""
self._iter = False
self._cursor.rewind()
# Properties
@property
def _collection(self):
"""Property that returns the collection object. This allows us to
perform operations only if the collection is accessed.
"""
return self._collection_obj
@property
def _cursor_args(self):
fields_name = "projection"
# snapshot is not handled at all by PyMongo 3+
# TODO: evaluate similar possibilities using modifiers
if self._snapshot:
msg = "The snapshot option is not anymore available with PyMongo 3+"
warnings.warn(msg, DeprecationWarning)
cursor_args = {}
if not self._timeout:
cursor_args["no_cursor_timeout"] = True
if self._allow_disk_use:
cursor_args["allow_disk_use"] = True
if self._loaded_fields:
cursor_args[fields_name] = self._loaded_fields.as_dict()
if self._search_text:
if fields_name not in cursor_args:
cursor_args[fields_name] = {}
cursor_args[fields_name]["_text_score"] = {"$meta": "textScore"}
return cursor_args
@property
def _cursor(self):
"""Return a PyMongo cursor object corresponding to this queryset."""
# If _cursor_obj already exists, return it immediately.
if self._cursor_obj is not None:
return self._cursor_obj
# Create a new PyMongo cursor.
# XXX In PyMongo 3+, we define the read preference on a collection
# level, not a cursor level. Thus, we need to get a cloned collection
# object using `with_options` first.
if self._read_preference is not None or self._read_concern is not None:
self._cursor_obj = self._collection.with_options(
read_preference=self._read_preference, read_concern=self._read_concern
).find(self._query, **self._cursor_args)
else:
self._cursor_obj = self._collection.find(self._query, **self._cursor_args)
# Apply "where" clauses to cursor
if self._where_clause:
where_clause = self._sub_js_fields(self._where_clause)
self._cursor_obj.where(where_clause)
# Apply ordering to the cursor.
# XXX self._ordering can be equal to:
# * None if we didn't explicitly call order_by on this queryset.
# * A list of PyMongo-style sorting tuples.
# * An empty list if we explicitly called order_by() without any
# arguments. This indicates that we want to clear the default
# ordering.
if self._ordering:
# explicit ordering
self._cursor_obj.sort(self._ordering)
elif self._ordering is None and self._document._meta["ordering"]:
# default ordering
order = self._get_order_by(self._document._meta["ordering"])
self._cursor_obj.sort(order)
if self._limit is not None:
self._cursor_obj.limit(self._limit)
if self._skip is not None:
self._cursor_obj.skip(self._skip)
if self._hint != -1:
self._cursor_obj.hint(self._hint)
if self._collation is not None:
self._cursor_obj.collation(self._collation)
if self._batch_size is not None:
self._cursor_obj.batch_size(self._batch_size)
if self._comment is not None:
self._cursor_obj.comment(self._comment)
return self._cursor_obj
def __deepcopy__(self, memo):
"""Essential for chained queries with ReferenceFields involved"""
return self.clone()
@property
def _query(self):
if self._mongo_query is None:
self._mongo_query = self._query_obj.to_query(self._document)
if self._cls_query:
if "_cls" in self._mongo_query:
self._mongo_query = {"$and": [self._cls_query, self._mongo_query]}
else:
self._mongo_query.update(self._cls_query)
return self._mongo_query
@property
def _dereference(self):
if not self.__dereference:
self.__dereference = _import_class("DeReference")()
return self.__dereference
def no_dereference(self):
"""Turn off any dereferencing for the results of this queryset."""
queryset = self.clone()
queryset._auto_dereference = False
return queryset
# Helper Functions
def _item_frequencies_map_reduce(self, field, normalize=False):
map_func = """
function() {
var path = '{{~%(field)s}}'.split('.');
var field = this;
for (p in path) {
if (typeof field != 'undefined')
field = field[path[p]];
else
break;
}
if (field && field.constructor == Array) {
field.forEach(function(item) {
emit(item, 1);
});
} else if (typeof field != 'undefined') {
emit(field, 1);
} else {
emit(null, 1);
}
}
""" % {
"field": field
}
reduce_func = """
function(key, values) {
var total = 0;
var valuesSize = values.length;
for (var i=0; i < valuesSize; i++) {
total += parseInt(values[i], 10);
}
return total;
}
"""
values = self.map_reduce(map_func, reduce_func, "inline")
frequencies = {}
for f in values:
key = f.key
if isinstance(key, float):
if int(key) == key:
key = int(key)
frequencies[key] = int(f.value)
if normalize:
count = sum(frequencies.values())
frequencies = {k: float(v) / count for k, v in frequencies.items()}
return frequencies
def _item_frequencies_exec_js(self, field, normalize=False):
"""Uses exec_js to execute"""
freq_func = """
function(path) {
var path = path.split('.');
var total = 0.0;
db[collection].find(query).forEach(function(doc) {
var field = doc;
for (p in path) {
if (field)
field = field[path[p]];
else
break;
}
if (field && field.constructor == Array) {
total += field.length;
} else {
total++;
}
});
var frequencies = {};
var types = {};
var inc = 1.0;
db[collection].find(query).forEach(function(doc) {
field = doc;
for (p in path) {
if (field)
field = field[path[p]];
else
break;
}
if (field && field.constructor == Array) {
field.forEach(function(item) {
frequencies[item] = inc + (isNaN(frequencies[item]) ? 0: frequencies[item]);
});
} else {
var item = field;
types[item] = item;
frequencies[item] = inc + (isNaN(frequencies[item]) ? 0: frequencies[item]);
}
});
return [total, frequencies, types];
}
"""
total, data, types = self.exec_js(freq_func, field)
values = {types.get(k): int(v) for k, v in data.items()}
if normalize:
values = {k: float(v) / total for k, v in values.items()}
frequencies = {}
for k, v in values.items():
if isinstance(k, float):
if int(k) == k:
k = int(k)
frequencies[k] = v
return frequencies
def _fields_to_dbfields(self, fields):
"""Translate fields' paths to their db equivalents."""
subclasses = []
if self._document._meta["allow_inheritance"]:
subclasses = [get_document(x) for x in self._document._subclasses][1:]
db_field_paths = []
for field in fields:
field_parts = field.split(".")
try:
field = ".".join(
f if isinstance(f, str) else f.db_field
for f in self._document._lookup_field(field_parts)
)
db_field_paths.append(field)
except LookUpError as err:
found = False
# If a field path wasn't found on the main document, go
# through its subclasses and see if it exists on any of them.
for subdoc in subclasses:
try:
subfield = ".".join(
f if isinstance(f, str) else f.db_field
for f in subdoc._lookup_field(field_parts)
)
db_field_paths.append(subfield)
found = True
break
except LookUpError:
pass
if not found:
raise err
return db_field_paths
def _get_order_by(self, keys):
"""Given a list of MongoEngine-style sort keys, return a list
of sorting tuples that can be applied to a PyMongo cursor. For
example:
>>> qs._get_order_by(['-last_name', 'first_name'])
[('last_name', -1), ('first_name', 1)]
"""
key_list = []
for key in keys:
if not key:
continue
if key == "$text_score":
key_list.append(("_text_score", {"$meta": "textScore"}))
continue
direction = pymongo.ASCENDING
if key[0] == "-":
direction = pymongo.DESCENDING
if key[0] in ("-", "+"):
key = key[1:]
key = key.replace("__", ".")
try:
key = self._document._translate_field_name(key)
except Exception:
# TODO this exception should be more specific
pass
key_list.append((key, direction))
return key_list
def _get_scalar(self, doc):
def lookup(obj, name):
chunks = name.split("__")
for chunk in chunks:
obj = getattr(obj, chunk)
return obj
data = [lookup(doc, n) for n in self._scalar]
if len(data) == 1:
return data[0]
return tuple(data)
def _sub_js_fields(self, code):
"""When fields are specified with [~fieldname] syntax, where
*fieldname* is the Python name of a field, *fieldname* will be
substituted for the MongoDB name of the field (specified using the
:attr:`name` keyword argument in a field's constructor).
"""
def field_sub(match):
# Extract just the field name, and look up the field objects
field_name = match.group(1).split(".")
fields = self._document._lookup_field(field_name)
# Substitute the correct name for the field into the javascript
return '["%s"]' % fields[-1].db_field
def field_path_sub(match):
# Extract just the field name, and look up the field objects
field_name = match.group(1).split(".")
fields = self._document._lookup_field(field_name)
# Substitute the correct name for the field into the javascript
return ".".join([f.db_field for f in fields])
code = re.sub(r"\[\s*~([A-z_][A-z_0-9.]+?)\s*\]", field_sub, code)
code = re.sub(r"\{\{\s*~([A-z_][A-z_0-9.]+?)\s*\}\}", field_path_sub, code)
return code
def _chainable_method(self, method_name, val):
"""Call a particular method on the PyMongo cursor call a particular chainable method
with the provided value.
"""
queryset = self.clone()
# Get an existing cursor object or create a new one
cursor = queryset._cursor
# Find the requested method on the cursor and call it with the
# provided value
getattr(cursor, method_name)(val)
# Cache the value on the queryset._{method_name}
setattr(queryset, "_" + method_name, val)
return queryset