Начало работы над логикой релевантности.

This commit is contained in:
Jack Stdin
2016-01-17 01:18:22 +03:00
parent 6c09dd2cdb
commit 586768b315
9 changed files with 102 additions and 42 deletions

View File

@@ -1,25 +1,35 @@
# -*- coding: utf-8 -*-
import json
import re
import Levenshtein
import psycopg2
import sphinxapi
import aore.sphinxapi as sphinxapi
from aore.config import db as dbparams
from aore.config import db as dbparams, sphinx_index_sugg, sphinx_index_addjobj
from aore.dbutils.dbimpl import DBImpl
from aore.fias.word import WordEntry
from aore.fias.wordentry import WordEntry
from aore.miscutils.trigram import trigram
class SphinxSearch:
def __init__(self):
self.delta_len = 2
self.rating_limit_soft = 0.4
self.rating_limit_hard = 0.82
self.default_rating_delta = 2
self.regression_coef = 0.04
self.db = DBImpl(psycopg2, dbparams)
self.client = sphinxapi.SphinxClient()
self.client.SetServer("localhost", 9312)
self.client.SetLimits(0, 10)
self.client1 = sphinxapi.SphinxClient()
self.client1.SetServer("localhost", 9312)
self.client1.SetLimits(0, 10)
self.client1.SetConnectTimeout(7.0)
def __configure(self, index_name, wlen=None):
if index_name == "idx_fias_sugg":
if wlen:
@@ -28,15 +38,13 @@ class SphinxSearch:
self.client.SetFilterRange("len", int(wlen) - self.delta_len, int(wlen) + self.delta_len)
self.client.SetSelect("word, len, @weight+{}-abs(len-{}) AS krank".format(self.delta_len, wlen))
self.client.SetSortMode(sphinxapi.SPH_SORT_EXTENDED, "krank DESC")
else:
self.client.SetMatchMode(sphinxapi.MA)
def __get_suggest(self, word):
def __get_suggest(self, word, rating_limit, count):
word_len = str(len(word) / 2)
trigrammed_word = '"{}"/1'.format(trigram(word))
self.__configure("idx_fias_sugg", word_len)
result = self.client.Query(trigrammed_word, 'idx_fias_sugg')
self.__configure(sphinx_index_sugg, word_len)
result = self.client.Query(trigrammed_word, sphinx_index_sugg)
# Если по данному слову не найдено подсказок (а такое бывает?)
# возвращаем []
@@ -44,29 +52,63 @@ class SphinxSearch:
return []
maxrank = result['matches'][0]['attrs']['krank']
maxleven = None
outlist = list()
for match in result['matches']:
if maxrank - match['attrs']['krank'] < 2:
outlist.append([match['attrs']['word'], Levenshtein.jaro(word, match['attrs']['word'])])
if len(outlist) >= count:
break;
if maxrank - match['attrs']['krank'] < self.default_rating_delta:
jaro_rating = Levenshtein.jaro(word, match['attrs']['word'])
if not maxleven:
maxleven = jaro_rating - jaro_rating * self.regression_coef
if jaro_rating >= rating_limit and jaro_rating >= maxleven:
outlist.append([match['attrs']['word'], jaro_rating])
outlist.sort(key=lambda x: x[1], reverse=True)
for x in outlist:
print x[0], x[1]
return outlist
def __split_phrase(self, phrase):
phrase = unicode(phrase).replace('-', '').replace('@', '').lower()
return re.split(r"[ ,:.]+", phrase)
return re.split(r"[ ,:.#$]+", phrase)
def __process_words(self, words):
def __add_word_variations(self, word_entry):
if word_entry.MT_MANY_SUGG:
suggs = self.__get_suggest(word_entry.word, self.rating_limit_soft, 6)
for suggestion in suggs:
word_entry.add_variation(suggestion[0])
if word_entry.MT_SOME_SUGG:
suggs = self.__get_suggest(word_entry.word, self.rating_limit_hard, 3)
for suggestion in suggs:
word_entry.add_variation(suggestion[0])
if word_entry.MT_LAST_STAR:
word_entry.add_variation(word_entry.word+'*')
if word_entry.MT_AS_IS:
word_entry.add_variation(word_entry.word)
if word_entry.MT_ADD_SOCR:
word_entry.add_variation_socr()
def __get_word_entries(self, words):
for word in words:
yield WordEntry(self.db, word)
if word != '':
we = WordEntry(self.db, word)
self.__add_word_variations(we)
yield we
def find(self, text):
words = self.__split_phrase(text)
word_entries = self.__process_words(words)
for word_entry in word_entries:
print word_entry, word_entry.get_type()
# result = self.client.Query(text)
# print json.dumps(result)
# logging.info("12")
word_entries = self.__get_word_entries(words)
sentence = "{}".format(" MAYBE ".join(x.get_variations() for x in word_entries))
#self.__configure(sphinx_index_addjobj)
self.client1.SetMatchMode(sphinxapi.SPH_MATCH_EXTENDED2)
self.client1.SetRankingMode(sphinxapi.SPH_RANK_SPH04)
#self.client1.SetF
rs = self.client1.Query(sentence, sphinx_index_addjobj)
print rs
for ma in rs['matches']:
print ma['attrs']['fullname'], ma['weight']
print sentence