120 lines
4.6 KiB
Python
120 lines
4.6 KiB
Python
# -*- coding: utf-8 -*-
|
||
import json
|
||
import re
|
||
|
||
import Levenshtein
|
||
import psycopg2
|
||
import sphinxapi
|
||
|
||
from aore.config import db as dbparams, sphinx_index_sugg, sphinx_index_addjobj
|
||
from aore.dbutils.dbimpl import DBImpl
|
||
from aore.fias.wordentry import WordEntry
|
||
from aore.miscutils.trigram import trigram
|
||
|
||
|
||
class SphinxSearch:
|
||
def __init__(self):
|
||
self.delta_len = 2
|
||
self.rating_limit_soft = 0.4
|
||
self.rating_limit_hard = 0.82
|
||
self.default_rating_delta = 2
|
||
self.regression_coef = 0.04
|
||
|
||
self.db = DBImpl(psycopg2, dbparams)
|
||
|
||
self.client_sugg = sphinxapi.SphinxClient()
|
||
self.client_sugg.SetServer("localhost", 9312)
|
||
self.client_sugg.SetLimits(0, 10)
|
||
self.client_sugg.SetConnectTimeout(3.0)
|
||
|
||
self.client_show = sphinxapi.SphinxClient()
|
||
self.client_show.SetServer("localhost", 9312)
|
||
self.client_show.SetLimits(0, 10)
|
||
self.client_show.SetConnectTimeout(3.0)
|
||
|
||
def __configure(self, index_name, wlen=None):
|
||
if index_name == "idx_fias_sugg":
|
||
if wlen:
|
||
self.client_sugg.SetMatchMode(sphinxapi.SPH_MATCH_EXTENDED2)
|
||
self.client_sugg.SetRankingMode(sphinxapi.SPH_RANK_WORDCOUNT)
|
||
self.client_sugg.SetFilterRange("len", int(wlen) - self.delta_len, int(wlen) + self.delta_len)
|
||
self.client_sugg.SetSelect("word, len, @weight+{}-abs(len-{}) AS krank".format(self.delta_len, wlen))
|
||
self.client_sugg.SetSortMode(sphinxapi.SPH_SORT_EXTENDED, "krank DESC")
|
||
else:
|
||
self.client_show.SetMatchMode(sphinxapi.SPH_MATCH_EXTENDED2)
|
||
self.client_show.SetRankingMode(sphinxapi.SPH_RANK_BM25)
|
||
|
||
def __get_suggest(self, word, rating_limit, count):
|
||
word_len = str(len(word) / 2)
|
||
trigrammed_word = '"{}"/1'.format(trigram(word))
|
||
|
||
self.__configure(sphinx_index_sugg, word_len)
|
||
result = self.client_sugg.Query(trigrammed_word, sphinx_index_sugg)
|
||
|
||
# Если по данному слову не найдено подсказок (а такое бывает?)
|
||
# возвращаем []
|
||
|
||
if not result['matches']:
|
||
return []
|
||
|
||
maxrank = result['matches'][0]['attrs']['krank']
|
||
maxleven = None
|
||
|
||
outlist = list()
|
||
for match in result['matches']:
|
||
if len(outlist) >= count:
|
||
break;
|
||
|
||
if maxrank - match['attrs']['krank'] < self.default_rating_delta:
|
||
jaro_rating = Levenshtein.jaro(word, match['attrs']['word'])
|
||
if not maxleven:
|
||
maxleven = jaro_rating - jaro_rating * self.regression_coef
|
||
if jaro_rating >= rating_limit and jaro_rating >= maxleven:
|
||
outlist.append([match['attrs']['word'], jaro_rating])
|
||
|
||
outlist.sort(key=lambda x: x[1], reverse=True)
|
||
|
||
return outlist
|
||
|
||
def __split_phrase(self, phrase):
|
||
phrase = unicode(phrase).replace('-', '').replace('@', '').lower()
|
||
return re.split(r"[ ,:.#$]+", phrase)
|
||
|
||
def __add_word_variations(self, word_entry, strong):
|
||
if word_entry.MT_MANY_SUGG and not strong:
|
||
suggs = self.__get_suggest(word_entry.word, self.rating_limit_soft, 6)
|
||
for suggestion in suggs:
|
||
word_entry.add_variation(suggestion[0])
|
||
if word_entry.MT_SOME_SUGG and not strong:
|
||
suggs = self.__get_suggest(word_entry.word, self.rating_limit_hard, 3)
|
||
for suggestion in suggs:
|
||
word_entry.add_variation(suggestion[0])
|
||
if word_entry.MT_LAST_STAR:
|
||
word_entry.add_variation(word_entry.word+'*')
|
||
if word_entry.MT_AS_IS:
|
||
word_entry.add_variation(word_entry.word)
|
||
if word_entry.MT_ADD_SOCR:
|
||
word_entry.add_variation_socr()
|
||
|
||
def __get_word_entries(self, words, strong):
|
||
for word in words:
|
||
if word != '':
|
||
we = WordEntry(self.db, word)
|
||
self.__add_word_variations(we, strong)
|
||
if we.get_variations() == "()":
|
||
raise BaseException("Cannot process sentence.")
|
||
yield we
|
||
|
||
def find(self, text, strong):
|
||
words = self.__split_phrase(text)
|
||
word_entries = self.__get_word_entries(words, strong)
|
||
sentence = "{}".format(" MAYBE ".join(x.get_variations() for x in word_entries))
|
||
|
||
self.__configure(sphinx_index_addjobj)
|
||
rs = self.client_show.Query(sentence, sphinx_index_addjobj)
|
||
|
||
results = []
|
||
for ma in rs['matches']:
|
||
results.append([ma['attrs']['aoid'], ma['attrs']['fullname'], ma['weight']])
|
||
return results
|