162 lines
6.1 KiB
Python
162 lines
6.1 KiB
Python
# -*- coding: utf-8 -*-
|
||
import re
|
||
|
||
import Levenshtein
|
||
import sphinxapi
|
||
import time
|
||
|
||
from aore.config import sphinx_conf
|
||
from aore.fias.wordentry import WordEntry
|
||
from aore.miscutils.trigram import trigram
|
||
from aore.config import basic
|
||
|
||
|
||
class SphinxSearch:
|
||
# Config's
|
||
delta_len = 2
|
||
|
||
rating_limit_soft = 0.41
|
||
rating_limit_soft_count = 6
|
||
|
||
rating_limit_hard = 0.82
|
||
rating_limit_hard_count = 3
|
||
|
||
default_rating_delta = 2
|
||
regression_coef = 0.08
|
||
max_result = 10
|
||
|
||
exclude_freq_words = True
|
||
|
||
def __init__(self, db):
|
||
self.db = db
|
||
self.client_sugg = sphinxapi.SphinxClient()
|
||
self.client_sugg.SetServer(sphinx_conf.host_name, sphinx_conf.port)
|
||
self.client_sugg.SetLimits(0, self.max_result)
|
||
self.client_sugg.SetConnectTimeout(3.0)
|
||
|
||
self.client_show = sphinxapi.SphinxClient()
|
||
self.client_show.SetServer(sphinx_conf.host_name, sphinx_conf.port)
|
||
self.client_show.SetLimits(0, self.max_result)
|
||
self.client_show.SetConnectTimeout(3.0)
|
||
|
||
def __configure(self, index_name, wlen=None):
|
||
self.client_sugg.ResetFilters()
|
||
if index_name == sphinx_conf.index_sugg and wlen:
|
||
self.client_sugg.SetRankingMode(sphinxapi.SPH_RANK_WORDCOUNT)
|
||
self.client_sugg.SetFilterRange("len", int(wlen) - self.delta_len, int(wlen) + self.delta_len)
|
||
self.client_sugg.SetSelect("word, len, @weight+{}-abs(len-{}) AS krank".format(self.delta_len, wlen))
|
||
self.client_sugg.SetSortMode(sphinxapi.SPH_SORT_EXTENDED, "krank DESC")
|
||
else:
|
||
self.client_show.SetRankingMode(sphinxapi.SPH_RANK_BM25)
|
||
self.client_show.SetSortMode(sphinxapi.SPH_SORT_RELEVANCE)
|
||
|
||
def __get_suggest(self, word, rating_limit, count):
|
||
word_len = str(len(word) / 2)
|
||
trigrammed_word = '"{}"/1'.format(trigram(word))
|
||
|
||
self.__configure(sphinx_conf.index_sugg, word_len)
|
||
result = self.client_sugg.Query(trigrammed_word, sphinx_conf.index_sugg)
|
||
|
||
# Если по данному слову не найдено подсказок (а такое бывает?)
|
||
# возвращаем []
|
||
|
||
if not result['matches']:
|
||
return []
|
||
|
||
maxrank = result['matches'][0]['attrs']['krank']
|
||
maxleven = None
|
||
|
||
outlist = list()
|
||
for match in result['matches']:
|
||
if len(outlist) >= count:
|
||
break
|
||
|
||
if maxrank - match['attrs']['krank'] < self.default_rating_delta:
|
||
jaro_rating = Levenshtein.jaro(word, match['attrs']['word'])
|
||
if not maxleven:
|
||
maxleven = jaro_rating - jaro_rating * self.regression_coef
|
||
if jaro_rating >= rating_limit and jaro_rating >= maxleven:
|
||
outlist.append([match['attrs']['word'], jaro_rating])
|
||
del jaro_rating
|
||
|
||
outlist.sort(key=lambda x: x[1], reverse=True)
|
||
|
||
return outlist
|
||
|
||
def __add_word_variations(self, word_entry, strong):
|
||
if word_entry.MT_MANY_SUGG and not strong:
|
||
suggs = self.__get_suggest(word_entry.word, self.rating_limit_soft, self.rating_limit_soft_count)
|
||
for suggestion in suggs:
|
||
word_entry.add_variation(suggestion[0])
|
||
if word_entry.MT_SOME_SUGG and not strong:
|
||
suggs = self.__get_suggest(word_entry.word, self.rating_limit_hard, self.rating_limit_hard_count)
|
||
for suggestion in suggs:
|
||
word_entry.add_variation(suggestion[0])
|
||
if word_entry.MT_LAST_STAR:
|
||
word_entry.add_variation(word_entry.word + '*')
|
||
if word_entry.MT_AS_IS:
|
||
word_entry.add_variation(word_entry.word)
|
||
if word_entry.MT_ADD_SOCR:
|
||
word_entry.add_variation_socr()
|
||
|
||
# Получает список объектов (слово), пропуская часто используемые слова
|
||
def __get_word_entries(self, words, strong):
|
||
we_list = []
|
||
for word in words:
|
||
if word != '':
|
||
we = WordEntry(self.db, word)
|
||
if self.exclude_freq_words and we.is_freq_word:
|
||
pass
|
||
else:
|
||
self.__add_word_variations(we, strong)
|
||
|
||
assert we.get_variations() != "", "Cannot process sentence."
|
||
we_list.append(we)
|
||
|
||
return we_list
|
||
|
||
def find(self, text, strong):
|
||
def split_phrase(phrase):
|
||
phrase = unicode(phrase).replace('-', '').replace('@', '').lower()
|
||
return re.split(r"[ ,:.#$]+", phrase)
|
||
|
||
# сплитим текст на слова
|
||
words = split_phrase(text)
|
||
|
||
# получаем список объектов
|
||
word_entries = self.__get_word_entries(words, strong)
|
||
word_count = len(word_entries)
|
||
|
||
# проверяем, есть ли вообще что-либо в списке объектов слов (или же все убрали как частое)
|
||
assert word_count > 0, "No legal words is specified"
|
||
|
||
# формируем строки для поиска в Сфинксе
|
||
for x in range(word_count, max(0, word_count - 3), -1):
|
||
self.client_show.AddQuery("\"{}\"/{}".format(" ".join(x.get_variations() for x in word_entries), x),
|
||
sphinx_conf.index_addjobj)
|
||
|
||
self.__configure(sphinx_conf.index_addjobj)
|
||
|
||
start_t = time.time()
|
||
rs = self.client_show.RunQueries()
|
||
elapsed_t = time.time() - start_t
|
||
|
||
if basic.logging:
|
||
print(elapsed_t)
|
||
|
||
results = []
|
||
parsed_ids = []
|
||
|
||
for i in range(0, len(rs)):
|
||
for ma in rs[i]['matches']:
|
||
if len(results) >= self.max_result:
|
||
break
|
||
if not ma['attrs']['aoid'] in parsed_ids:
|
||
parsed_ids.append(ma['attrs']['aoid'])
|
||
results.append(
|
||
dict(aoid=ma['attrs']['aoid'], text=unicode(ma['attrs']['fullname']), ratio=ma['weight'], cort=i))
|
||
|
||
results.sort(key=lambda x: Levenshtein.ratio(text, x['text']), reverse=True)
|
||
|
||
return results
|